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ABSTRACT

For many years shear-driven turbulence was thought to provide sufficient turbulent mixing in stably
stratified regions to explain stellar structure data. It has recently been argued that the mixing is too
weak and that alternative mixing mechanisms are required. The conclusion is predicated, among others,
on the key assumption that turbulence exists only for Ri < Ri,, = 4. This result follows from linear sta-
bility analysis and contradicts a variety of data. We suggest a new definition of Ri,,: it is the value of Ri
at which the turbulent kinetic energy vanishes. We find that for Pe > 1 (no radiative losses) Ri,, ~ 1, while
for Pe < 1 (important radiative losses) Ri,, ~ Pe”* > 1. Thus, we find more mixing. We present an inter-
nally consistent treatment of all the physical variables, individually and collectively, and show that tur-
bulence is alive and well above the Ri > % limit. However, without a specific application of the model to
a stellar case, we cannot claim that the new model will provide the mixing required by stellar data.

Subject headings: hydrodynamics — stars: interiors — turbulence

1. INTRODUCTION

It has long been thought that shear-driven turbulence
could provide the turbulent mixing necessary to explain a
variety of stellar data (Schatzman 1969; Zahn 1992, 1993,
1994). Recently, however, several authors have voiced dis-
satisfaction about the resulting mixing being too weak
(Schatzman & Baglin 1991; Maeder 1995, 1996, 1997,
Maeder & Meynet 1996; Pinsonneault et al. 1990a, 1990b;
Pinsonneault 1997; Chaboyer, Demarque, & Pinsonneault
1995; Talon et al. 1997). We reanalyze the problem using a
turbulence model which, in contrast with phenomenologi-
cal models, does not require patch-up work and, perhaps
most importantly, has a proven record of performance.

The gist of the results is as follows: the upper limit of the
Richardson number Ri . above which turbulence no longer
exists is not given by Ri, = % as assumed thus far. We
suggest defining Ri,, as the value at which the turbulent
kinetic energy vanishes. It follows that when Pe > 1
(negligible radiative losses), Ri_, ~ 1, in agreement with the
data; when Pe <1 (important radiative losses), Ri. ~
Pe ™! > 1. In both regimes, turbulence exists beyond the
Ri = % limit. This provides more mixing.

Before we present the new model, it is important to gain
some physical insight into the problem. Consider the Rey-
nolds stress uw which is related to the mean shear by a
turbulent momentum diffusivity v;:
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<

(1a)

Since v; has dimensions of velocity times length, it is cus-
tomary to write it as

K2
szcv_,
€

(1b)

where

C, = C,(Ri, Pe) . (1c)

Here the Richardson number Ri characterizes the degree of
stratification and the Peclet number Pe = wiy ! character-
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izes the importance of radiative losses; K is the turbulent
kinetic energy and e is the rate of dissipation of K. Since K
and € are solutions of two well-known differential equations
(see eqs. [48]-[49]), this is known as the K-€ model widely
used to study shear-driven turbulence (for an extensive list
of applications, see Rodi 1984). We must also include the
heat flux (in units of ¢, p)

w =18, (2a)
where the turbulent heat diffusivity y; is written as
K2
xr=Cy (2b)
and
Ch = Ch(Ri, Pe) . (2C)

The turbulent Prandtl number o is defined as the ratio

vp C,
or=—=—, 2d
=."C, (2d)

where
O-T = O-T(Ri, Pe) .

The Richardson number Ri (e.g., Maslowe 1981; Tritton &
Davies 1981) is defined as the ratio of the squares of the
Brunt-Viisila frequency N to the mean shear X,

Ri= SR (2e)
where
N2 = _g“ﬁ >
oT oT 1
=-3 +<az>ad—THp V—-V,d, (2f)

and o is the thermal expansion coefficient. The mean shear

Y is defined as
1/0U, 0U;
T =(28;;S;)!? o =iy 2 )
( SljSlJ) s Sl] 2 (axj + axi> , ( g)

where S;; is the shear and U, is the large-scale velocity field.
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What is the expected form of C(Ri, Pe) and C,(Ri, Pe)?
First, they must satisfy the well-known asymptotic limits of
Ri — 0 (pure shear) and Ri — oo (convection); in the first
case, the model must reproduce the empirical value

C,0, 0) ~ 0.1, (2h)

and in the second case it must reproduce the thermal con-
vection results (§ 16):

Pe>1: &~Pe,
X

Pe<1: *T < pe?. (2i)
2

Let us now consider the overall structure of the functions
C, ;. In the case of ocean turbulence, stratification effects
are unimpeded since there are no radiative losses Pe > 1,
and C, is expected to decrease with Ri. The critical question
is to determine the value Ri_, at which C, vanishes. Ocean
data suggest Ri_, > 1. When radiative losses are important,
Pe < 1, stratification loses its power to damp turbulence,
and for a given Ri, C, should increase as Pe decreases; thus,
the value of Ri,, is larger than values of Ri than in the
Pe > 1 case. The precise value of Ri_, can be derived only
from solving the full turbulence problem. Model results are
presented in Figure 1.

Next, consider C,(Ri, Pe). Here we expect a behavior
quite different from that of C (Ri, Pe). In fact, at any given
Ri, the increase in radiative losses (decreases of Pe) weakens
the correlations among velocity and temperature fields and
thus C, must decrease correspondingly, just the opposite of
what happens to C,. If this behavior persists all the way to
Ri— 0, then the curves corresponding to different Pe
cannot begin at the same point as in the C, case. This would
imply that at Ri — 0,

Pe>1: C,0, Pe) ~ Pe®,
Pe <1: C,0, Pe) ~ Pe. (2j)

The model results are presented in Figure 2 (see also § 12).
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FiGg. 1.—Model predictions for the function C(Ri, Pe) = 25 ; see eqs.
(1b) and (44a). The Peclet number Pe is defined in egs. (15), (53a) and (53b).
Pe, is treated as a free parameter to highlight the sensitivity of C, to
radiative losses. As explained in the text, oceanic data (Pe > 1) show that
turbulence exits up to Ri ~ 1, as predicted by this model. As radiative
losses become important (Pe < 1), the effect of stratification that weakens
turbulence decreases, and one has more mixing, represented by a larger C,.
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F1G. 2—Same as in Fig. 1, but for the function C,(Ri, Pe) = 25,; see
eqs. (2b) and (44a). Contrary to the case of momentum diffusivity, an
increase in the effect of radiative losses decreases C,,.

Concerning Ri,,, we analyze two well-known suggestions
and then suggest a new criterion. First, consider the stan-
dard assumption that turbulence exists only for

Ri<Ri,, Ri,=%. (3a)

A problem with equation (3a) arose when atmospheric tur-
bulence was found to exist for Ri > ;. Townsend (1958a,
1958b) invoked the effect of radiative losses; that is the case
Pe < 1. He suggested that in that case there is a renormal-
ization of Ri, to

Ri — Ri = RiPe (3b)
and that equation (3a) changes to
RiPe <Ri,, Ri,=1%. (3¢)

Since Pe < 1, even if Ri > %, equation (3c) is satisfied. At
first sight, the renormalization equation (3b) has an intuitive
appeal since radiative losses erode the temperature gradient
and thus weaken its role as a sink of turbulence. There is,
however, an observational fact that cannot be explained by
radiative losses alone: in the ocean there are no radiative
losses, and yet equation (3a) is violated: in fact, turbulence
exists up to Ri ~ 1. The earliest laboratory data seem to be
by Taylor (see Monin & Yaglom 1971) who found that
considerable turbulent exchange may exist even when
Ri ~ 10. More recently, Martin (1985) and Smart (1988)
have found considerable mixing in the ocean upto Ri ~ 1, a
result also validated by the LES results of Wang, Large, &
McWilliams (1997). This means that, independently of the
effects of radiative losses, a model for stably stratified turbu-
lence must be able to explain the existence of turbulence
past the Ri,, = % limit. As shown in Figure 1, the new model
predicts Ri;, > 1, in agreement with ocean data.

Next, consider the flux Richardson number R,
(Townsend 1958a, 1958b). In the stationary and no-
diffusion limit, production P of turbulence must equal its
rate of dissipation €. Since P = P, + P,, where

Ps=—Waa—lZ], P, = gow0 , (3d)

the P = e condition, using equations (1a) and (2a) becomes
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FiG. 3—Turbulent Prandtl number o, is defined as the ratio of the
momentum to the temperature turbulent diffusivities and is given by the
ratio C,/C,. For the case of no radiative losses, we reproduce the labo-
ratory data of Webster (1964).

where the flux Richardson number R is defined as

Ri
Ry=—. (3f)

T
On the basis of equation (3e), Townsend (1958a, 1958b)
suggested the condition
R,<1. (3g)
We now show that equation (3g) is naturally satisfied. Spe-
cifically, we show that
Ri— co: R;—constant <1. (3h)

To prove equation (3h) without carrying out a full compu-
tation, we recall that when radiative losses are unimportant,
laboratory data (Webster 1964; Istweire & Helland 1989)
and numerical simulations (Schumann & Gerz 1995; Wang
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F16. 4—Flux Richardson number R vs. Ri as from a variety of labo-
ratory data (redrawn from Maderich et al. 1995). The symbols refer to
different authors cited in Maderich et al. (1995) and refer to either grid
generated turbulence and/or freely decaying turbulence in a stratified
medium.
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et al. 1996) show that stable stratification reduces the trans-
fer of heat more than that of momentum, (see Fig. 3). Even
the simple fit

or(Ri, 00) = o0) + aRi (3i)
with a > 1 gives
Ri»ow: R;-a"'<1, 3)

in agreement with equation (3h).

To quantify the dependence of g on Pe, we use the
Ri - oo data corresponding to the case of convection and
equation (2a) rewritten as

wl = yr(Pe)| 1 . (4a)

From RNG (renormalization group; Canuto & Dubovikov
1998), we know that

Pe > 1: JH~Pe,
X

Pe<1: );—T~Pe2, (4b)

If we assume that v; does not depend on y since to first
order, momentum transfer is immune from radiative
process, equation (4b) suggests that

Pe < 1: opRi, Pe) ~ 6,(Ri)Pe . (40)
Thus,
Ri-»ow: R;-»a 'Pe<l1,

which also satisfies equation (3h). The laboratory data are
presented in Figure 4 (Linden 1979, 1980; Maderich, Kono-
valov, & Konstantinov 1995).

We propose that the true Ri,, is set by the behavior of the
turbulent kinetic energy K. When radiative losses are
important, stratification is much less effective and K
decreases with Ri much more slowly. K vanishes at a value
of Ri above which turbulence no longer exists. Thus, we
shall define Ri_, as the solution of the equation

KRi,) =0, (5a)
with
Ri., = Ri,(Pe) . (5b)
We expect the following conditions to be satisfied:
Ri(Pe < 1) > Ri.(o0) > § . (5¢)

The last condition is demanded by the ocean data discussed
earlier, while the first inequality is required by physical con-
siderations.

Finally, we discuss the temperature gradient. None of the
above turbulence variables is a measurable quantity as
such, only the final temperature gradient is, for example,
with helioseismological data that provide the sound speed
(Canuto & Christensen-Dalsgaard 1998). The standard flux
conservation law (F, is the radiative flux),

F,+ Fc = const, (6a)

is no longer valid since Reynolds stresses can be transported
by the large-scale flow giving rise to a flux U 7;; which must
enter the flux conservation law. In fact, the dynamic equa-
tion for the mean temperature (see eq. [18]) below, depends
on U;. As a consequence, the new flux conservation law
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reads
F; + F{ + F*+ pUjl(c, T + K, + K + G)d;; + 7;]
= constant . (6b)

What is conserved is the sum of the radiative, convective,
and turbulent kinetic energy (F*¢) fluxes plus a new term
that depends on the large-scale flow, U;; K, = 1U? is the
kinetic energy of the large-scale flow, G is the gravitational
field, and 7;; are the Reynolds stresses representing turbu-
lence. As an example, suppose i = 3, U = U(z), V(z), 0, and
use equations (1a), (2a), and (2f). Using

F,=K,TH,'V, F,=c,pw0, K,=c,px, (7a)
we obtain
XV + xr(V — Voo = 2VF, (7b)

where the new radiative V¥ is given by
0
V¥=V,+ H,/K, T)_1<va pe K, — er> . (9

The turbulence model presented here satisfies all the
above requirements. It was constructed using renormaliza-
tion group methods (RNG) and new data from laboratory,
direct and large eddy simulations (DNS and LES,
respectively) of shear, convection, stable stratification, etc.
In this new model: (1) all the dynamic equations governing
the turbulent variables are derived from the Navier-Stokes
equations and the entropy equations, (2) the inclusion of
shear, buoyancy rotation, etc., does not require additional
assumptions since the general rules are set at the beginning,
(3) the closures required to treat the higher order moments
have been tested on different flows, (4) the extension to cases
of astrophysical interest (low Prandtl number, small Peclet
number, etc.) is carried out by employing a two-point
closure model that allows a proper calculation of the rele-
vant timescales that depend on the Peclet number. We
present four turbulence models: (1) all the turbulent vari-
ables satisfy dynamic equations, (2) only K and its rate of
dissipation e satisfy dynamic equations while all the other
turbulent variables are given in algebraic form, (3) only e
satisfies a dynamic equation while all the other turbulent
variables are algebraic, and (4) all the turbulent variables
are given in algebraic form.

2. MAIN PHYSICAL PARAMETERS

In order to describe the flow under consideration, we
need to introduce several variables. Much as the large-scale
variables are characterized by N and X, shear-driven, strati-
fied turbulence is characterized by a shear number,

K

Sh=[ZK~ 12 = ~ @®)
and a Froude number,
K2 €
F = = — -1 .
T IN K N 9)
The Richardson number Ri is defined as
NZ

Ri = (Frsh) > =35 . (10)
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Fr quantities the role of nonlinear interactions versus the
effect of stratification,

vzl‘l_i_
Nv IN I

in the same way that the Reynolds number quantifies the
role of nonlinear interactions versus viscous forces,

27-1 I K12
Re—vl ol _ l

TwlTE oy v

K12

Fr = N1 11)

12

When Fr > 1, turbulent flows are only slightly affected by
stratification, and the inertial Kolmogorov spectrum
applies; when Fr < 1, turbulence is affected by stratifi-
cation, and Fr =1 is the demarcation between the two
regimes (often called “turbulence” and “wave” regimes).
Fr =1 occurs at the Ozmidov length scale (Dougherty
1961; Lumley 1964; Ozmidov 1965; Hunt, Kaimal, &

Gaynor 1985)
K12 e \1/2
Iy = N = <ﬁ> . (13)

Scales | > I, are strongly affected by stratification, while
those with | < [, are not. The problem also possesses four
timescales:

1 K 6>

) T= e’ To = 6_9 s
Finally, the Peclet number is defined as the ratio of the
radiative timescale [?y ~ ! to the turbulence timescale 7:
_le? 1 ,K* 4 K?
K 1% g B

Here K = (3Ko0/2)e**ky 23, 1 = n/k,, Ko = 5/3 is the Kol-
mogorov constant, and

2 \32
C. = n<%> . (16)

3. LARGE-SCALE DYNAMICS

iw=N1, 1,=X"1. (14

Pe (15)

The large-scale flow is characterized by a velocity field U;
which satisfies the following dynamic equation (D/Dt =
0/ot + U;0/0x)):

D

—U. =

Dt '
The Reynolds stresses are seen to contribute to the gas
pressure.

The second equation is for the mean temperature T
which reads (Canuto 1997)

0
—9i — 6_xj (5ijP + Tij) . 17)

D
—(,T+K,+K+G
th(cp +K,+K+G)

0
0x;

0
(F; + Fi+ Ff* + pr,U) + = P (19)
Here K = 11; and K, = $U? are the kinetic energies (per

unit mass) of turbulence and of the large-scale flow; G is the
gravitational field,

g:U;=— (19
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and Fj is the radiative flux. The convective and turbulent
kinetic energy fluxes are defined as

Fi=c,pu0, F°=3ipgu,, q*=uu. (20)
In the stationary case, 0/0t = 0, we obtain equation (6b).

As one can see, the equations for the large-scale fields U;
and T depend on turbulence via the Reynolds stresses 7;;
and the convective fluxes F{ which must be provided by a
turbulence model.

4. TURBULENCE MODEL

Turbulence models can be divided into two categories:
one-point closures and two-point closures. The first type
has been widely employed in the study of engineering flows,
while the second has been developed mostly to study tubu-
lence as such but rarely has the model been used in practical
applications. The gap has been closed recently by the work
of Canuto & Dubovikov (1996a, 1996b, 1996¢c, 1997a,
1997b, 1997c, 1998) who used the renormalization group to
derive a two-point closure model which is then integrated
over all wavenumbers to obtain the one-point closure which
can be directly used in the astrophysical context. The diffi-
culties of closure and the state of the art models are dis-
cussed in Canuto (1992, 1993, 1994).

In addition to the large-scale components (7, U,), the
velocity and temperature fields contain fluctuating parts
(6, u;), with 6 = u; = 0. With them, one constructs the fol-
lowing physical variables (second-order moments).

uu; =1 (Reynolds stresses) , (21)
K =11,  (turbulent kinetic energy),

u;0=h; (convective fluxes) , (22)
6% = (temperature variance) , (23)

B % 2 _ ﬂ 2
e‘”axj ’ ee_xﬁxi
(dissipation rates of K and 6%), (24)

for a total of 6 + 3 + 1 + 2 = 12 variables, each of which
satisfies a separate dynamic equation, and each of which
depends on the others so that it is not possible to construct
an expression for the convective flux without solving the
equation for the Reynolds stresses, and vice versa.

1. Turbulent kinetic energy, K

DK

D——I—D,(K) P+ P,—€, (252)
where 4; = g;a,
P, = —1,;8;, P,=xih;, (25b)
6
D/K) = F"e (25¢)

P, and P, are the rates of productlon of K by shear and
buoyancy, and D /(K) is the transport of the flux of turbulent
kinetic energy (per unit mass) defined in equation (20).

2. Temperature variance, 6*:

D1l 15)_ 0 01z
th() +D,<2(9>—P‘9 €9+a <6 29 , (26a)

TURBULENCE IN STARS. II. 771

1. o (1 —
Py=h;B;, Df(i 92>=a_x<5ui02>: (26b)

1

and P, and D, are the rates of production and transport of
the flux of temperature variance.
3. Reynolds stresses, b;; = 1;; — 3K0;;:

ij*

D 8 _
E: bij + Dy(b;) = — 15 KS;; — o' bij + Bs By
—(1—)Z; — (1 —ar)Z;;. (27a)
The traceless tensors B, X, and Z are defined as
Zij = Subi; + Sjby — %5ij Subu (27¢)
Zij = Vi bkj + ij by . (27d)

The shear §;; is defined in equation (2g) while the mean

vorticity tensor V;is defined by
Vi = 2 <8xj B 6x,-> ’ (27¢)

The diffusion term is defined as

0 1
Ff(bl]) X <ulujuk 3 51]‘1 uk) (27f)

4. Heat flux, h; = u,0:

D 3
D_tht+Df(ht) l_]ﬂj <1 4 )h S

5 _
< Z Oc3>h] ij + (1 yl)ﬂ‘l 02
_ 0 0
— Tt byt ( 6—x]h,>, (282)
with
D,(h) = (u ;0 + 5,;70) . (28b)

5. Dissipation rate, €,:
€ =1, 0% . (29)

6. Dissipation rate, €:

D
F; + De) =K ¢y P+ c3Py) — c, K™, (30a)

0
Do) =~ @) . (30b)
0x;
Since we have assumed an algebraic for €,, the number of
dynamic equationsis 11.

5. CRITICAL INGREDIENT: TIMESCALES AND THEIR
PECLET NUMBER DEPENDENCE

It is clear that the above equations cannot be solved
unless the turbulence model provides the timescales 7,,,, 7,
and 7,. They originate in the following way (Canuto 1992,
1993, 1994). The Navier-Stokes equations for the turbulent
velocity field contain pressure terms 0p/dx; = p ; which,
when one generates the equations for b;; and h;, bring into
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the problem vectors and tensors of the type
Hi EE, HijEujp’i +ujp,,- . (31)

Since the fluctuating pressure p does not satisfy the hydro-
static equilibrium equation, these higher order terms must
be modeled in terms of second-order terms. The process
brings about the timescales 7, (pressure-temperature) and
7,, (pressure-velocity), as well as the constants o’s and y;.
The timescale 7, was defined in equation (29). Since K and €
satisfy equations (25a) and (30), the dynamic timescale
T = 2K/e is known. The question then arises as to what are
the relations

(Tos Tpos Tpy) VETSUS T . (32

It is quite clear that since the radiative timescale may
become shorter than 7, equation (32) cannot be satisfied
with only constants of proportionality. One must go
beyond the present one-point formalism and employ a two-
point closure (Canuto & Dubovikov 1998). The results are
as follows:

T _ % , (33a)
% = (4n?) 7! Pe [1 + 5(@4n?) 11 + 0, ) Pe] "1, (33b)

Y 4777 Pe [1 + 4(Tn) "o, ' Pe] ' . (33¢)
T

The turbulent Prandtl number ¢, = o,(Pe) as a function of
Pe is given by

bo; =1 +§ > Pe ! (b — o)

-1y 1\ -ap
x [(1 +2272pe u) _ 1} , (34a)
2 a+t+o

where ¢ is the Prandtl number, typically ¢ < 1. The con-
stants a and b are given by

2a= (2 +49)2 -y, b=a+7y. (34b)
With y = 3/10, we have

% —058, b=072. (34c)
It is clear from equations (33)(34a) that
Pe> 1: (i po. @> ~Pe®, (352)
T T 7T

whereas for

Pe<1: 2%~ Pe, <@,@>~Pe. (35b)
T T T

Equation (35b) confirms what we assumed in deriving
equation (4c), radiative losses affect the temperature field
more than the momentum field. We recall that Pe is defined
by equation (15).

6. DIFFUSION TERMS

The third-order moments, equations (25c), (26b), (27f),
and (28Db), satisfy the dynamical equations derived earlier
(Canuto 1992, egs. [S5a]-[55d]; Appendix A).
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7. ALGEBRAIC MODELS

Although the model presented thus far is complete and
allows the calculation of the turbulent variables of interest,
it is obviously rather complex since it entails 11 different
equations. In this section, we present a model in which we
retain only two of the 11 differential equations, those for K
and e. In the remaining equations, we neglect the D/Dt term
and the diffusion terms. After some algebra we obtain

Reynolds stresses:

b;; = _14_5KTpv S+ Bs Tpo Bij —

i %Tpv(l - “1)21';'

- %Tpv(l - aZ)Zij . (36)
Convective fluxes:
Ayl = (XT)ijﬁj . (37a)

The turbulent conductivity tensor is given by

(XT)ij = T(bij + %51','1() (37b)

and

3
A= * 8 — (L —yy)etg 4 B + <1 -3 oc3>rSij
Tpo

+ (1 — Z oc3)rV,~j . (37¢)

The fact that the right-hand side of equation (37b) depends
on b;; itself makes the analytic solution in the three-
dimensional case somewhat cumbersome although manage-
able with symbolic algebra.

We recall that the “standard” model is an approximation
to equations (36) and (37) that retains only the first terms in
equation (36):

16 K°

b;; = _VTSij > Vr= 75 ¢’

i (374d)
while on the right-hand side of equation (37b) one retains
only the isotropic term, and the matrix A is taken to be
diagonal. Thus,

4 (1 ,\ K>
hi=xrBi, xr= 5 (%) P (37¢)

In Canuto & Christensen—Dalsgaard (1998) it was discussed
how models (37d) and (37¢) fail to reproduce the measured
values of b;; at the surface of the Sun and that in order to
reproduce such data one needs to include vorticity (Z;;) and
buoyancy (B;;) in equation (36). In addition, in case the
temperature gradient is nonzero only in the z-direction,
equation (37e) yields

uw=0, ud=0v0=0,
which disagrees with laboratory data (Komori et al. 1983;
Gerz, Schumann, & Elgobashi 1989; Gerz & Yamazaki

1993). As shown below, the present model is in agreement
with the data.

8. VERTICAL DIFFUSIVITIES

In this section we present the analytic solution of
equations (36)—(37) for a case of direct astrophysical interest.
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The temperature T and large-scale flow U are taken to be

0T 0T
Nl
ox; 0z

8., U =[U@),V(),0], (38a)

i3

and thus shear and vorticity tensors are given by

0 0 oUJez
oUjoz oV/)ez O
0 0 oUJez
v,=i o 0 avjez|.  (38b)

—oUJoz —aV/)ez 0

In order to homogenize the notation, we introduce the
dimensionless variables:

_ T _4 _Lo
j'_ 'L" j'1_15j', 22_2(1 <x1)1"
1 1 T
'1325(1_“2)1, /14=5ﬁ51, Aszt_pe,

3 5
de=1—Zay, dy=1—"a,, Ag=>1—7)=2. (38)
4 4 T

Equations (36)—37) can be solved using symbolic algebra.
The results are as follows:
Reynolds stresses:

ou ov

W:_VTE, W:_VTE, (393.)
uv = (A, + Az)tvr u v . (39b)
0z 0z
Timescales (see eqs. [33a]-[34b]):
1 K
5 T = : . (40)

Turbulent kinetic energies:

— 2 1 oU\? ov\?
2_CZ = _ ) -
W =3 K 3 rvT|:(iz + 313)< 62) 212< 6z> :|

2
+ 5 24 XT TN2 s (413)

— 2 1 ov\? oU\?
2 K== — | =24, —
vt =3 3 ‘L'VT|:(/12 + 323)< 6z> /12< 62) :|
2 2
+ 3 AaxrTN*, (41b)
w? — 2K = Ly, (A, — 325)2% — 40,y TN? . (41c)
Mean shear:

oU\? ov\?
2 — —_— —
2= (2) + (L) @)
Mean temperature gradient f (see eq. [2f]):

Heat fluxes:

wl =y B (43a)
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_ 1 ou
uf = _15_1|:VT + 5 (/16 + j~7)XT:|BT E > (43b)

v6

1 ou
=5 vr + 5 (ke + A)xr [BT s (43c)
2 0z

Turbulent momentum and heat diffusivities:

K? K?

vy =28, o tr= 28, - (44a)
Turbulent Prandtl number, 6;:
vr S,
o = . = s, (44b)
Dimensionless functions, S, ,:
DS, = sy + 5;(tN)? + s5,(t2)?, (45a)
DS, = s4 + 55(tN)* + 54(t2)*, (45b)

D =d, + d,(tN)* + d,(zX)?
+ dy(tN)* + d,(r*NZ)? + d5(zZ)* . (45¢)
Dimensionless variables, s;:
So=3414%, (46a)
$1= —Aalde + A7) + 224 As(Ay — 325 — 43)
+ 34145 dg, (46b)
S, = — 32— 2%, s,=24s, s5=2A4, (460C)
Se = 345(313 — 43) — 345 24345 — Ao) + 344(Ae — A7)

(464d)
Dimensionless variables, d, :
do =342, (47a)
dy = A5(Ths + 34g) , dy = A3343 — 29 — 34 — 4,
47b)

dy = 2484 + 30g) , ds =303 — 34343 — 43), (4Tc)
s = 2alhr de — 3h3 dy — 25(A3 — A3)] + As As(343 — A3) .
(47d)

9. FIRST NONLOCAL MODEL

The above relations can be used together with the non-
local equations for K and e.
Turbulent kinetic energy, K :

ll))—It(+Df(K)=vTZZ—XTN2—e, (48)
and dissipation, e:
De _ -
T Dy€) = €K '(cy vy Z* —c3xr N?) —c,?K7 1.
(49)

10. SECOND NONLOCAL MODEL

In this model, equation (48) is taken in its algebraic,
local form by neglecting the left-hand side altogether.
This is physically equivalent to assuming that
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production = dissipation,
e=v;2> —y; N*=v;Z*(1—-R)). (50a)
Using equations (44) and (40), equation (50a) becomes
(tZ)*S, — (N7)%S, = 2. (50b)

Using equations (45a)—(45c), equation (50b) becomes an
equation for the timescale 7 (in units of X)

(X =y, (S1a)
The result is
AY*+ By +C=0, (51b)
A= (ss + 2d3) Ri* — (s; — s¢ — 2d,) Ri — s, + 2d5 ,
B=(s4+2d)Ri—s,+2d,, C=2d, (51¢)

The simplicity of equation (51b) may be deceptive. In fact,
when Pe > 1, all the s, and d, values are independent of Pe;
A, B, C depend only on Ri, and equation (51b) is indeed
very simple. However, when Pe < 1, 4, B, C depend on Pe,
which in turn depends on both (K, €) or (, €) (eq. [15]), that
is, Pe depends on y itself, and equation (51b) is no longer a
second-order equation. An expression for Pe is given in the
next section.

11. FULLY LOCAL MODEL

One may want to sacrifice even equation (49) by taking
its local limit, which we write as

K32
€= R

It is indeed a considerable sacrifice for I, is not easy to
model. Before we do so, let us remark that once equation
(52) is adopted, K and Pe, given by equation (15), can be
expressed as

(52)

€

Pe
1 12 53
K, Vo Pe, 4 ’ (532)

where

Ko=4I2%%, Pey=3c2I. Ky =22y '. (53b)
Once a model for I, is provided, the model becomes fully
algebraic.

12. RADIATIVE ENERGY LOSSES
When Pe < 1, we have from equation (35b) that

Tor, o, (54)

Tpo Ty

and thus from equation (38c) it follows that s ~ Pe™! > 1,
Ag ~ Pe < 1. From equations (46a)—-(46d), we then have

So~Ai~PeT?, si46~As~PeTl, 5,5~ ~Pe,
(55a)
while from equations (47a)(47d), we have

d0,2~)“§~Pe_2, d1,4~}-5~Pe_1 .
(55b)
dy~is' ~Pe, ds~AI~Pe.
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13. MODELING THE LENGTH SCALE le
We begin by writing I, as
le=c.'Af(N, Z) (56a)

and require that (0, 0) = 1. We note that with equation
(16), equations (52) and (56a) are consistent with the Kolmo-
gorov energy spectrum E(k) = Koe?*k ™53, We have called
A the size of the largest eddy, k, A = n. A plausible model is
A = H, or, what is the same in the case of a polytrope,
A = z. The distortion of the Kolmogorov spectrum due to
stratification and shear is represented by the dimensionless
function f(N, Z). Even though a satisfactory theory of the
energy spectrum E(k) under shear and stable stratification is
still not available, there is some consensus on the overall
shape of E(k). Three separate regimes have been identified
with the corresponding spectra (Gargett et al. 1981):

I E(k) = (eN)2k>
0. E(k)=cN%k3 (56b)
II:  E(k) = Koe?3*k™ 53

Oceanic data (Gargett et al. 1981; Gargett 1989) suggest
¢ ~ 10, while atmospheric data suggest ¢ ~ 100 (Dewan &
Good 1986) so that the interval between regimes I and II
may be one or two decades. Furthermore, if one uses the
spectra I, II, and III and computes the Froude number,
equation (11), one finds that

I: Fr<1, Ri>1,
II: Fr=1, Ri~1, (56¢)
III: Fr>1, Ri<l1,

which means that we are mostly interested in regions II and
IIT which coincide at a length scale which is precisely the
Ozmidov scale (eq. [13]).

Using empirical arguments rather than a model for the
energy spectrum, Deardorff (1980), Hunt et al. (1988),
Dubrulle (1993), and Fernando & Hunt (1996) have sug-
gested the relations:

K12 1/2
SN, 0) =076~ f(0,5) =276 .

(56d)

Several comments are in order. First, since equation (56d)
do not satisfy the condition f(0, 0) = 1, they have only a
limited validity. Second, if in the Ozmidov scale, we substi-
tute equation (52), the resulting length scale is Deardorff’s
result, the first of equation (56d). Third and most important-
ly, f(N, 0) implies that

K
r~:~l€K_1/2~N_1, tN = constant , (57a)

which in turn implies that
Y= ~Ri1. (57b)

On the other hand, equation (51b) yields a y that increases
with Ri; this can be consistent with equation (57b) at only
one value of Ri, while Ri must be allowed to assume a range
of values. A similar conclusion can be reached using the
second of equation (56d).

Several people have tried to construct a model for
E(k, N, Z). Lumley’s (1964) model can be translated into a
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function f (N, X) of the form (Cheng & Canuto 1994):
FIN,Z)=[1—c; Fr 2 (1 —c,orRi"Y)] 73>, (57¢)
where 6, = o4(Ri). The two constants are given by
¢, = (2n*31%) 71 Ko*?, ¢, =04-06. (57d)
The Froude’s number is defined as

K12

Fre—.
"=AN

(57e)

As discussed in Cheng & Canuto (1994), Lumley’s formula-
tion is valid for small levels of stratification. Weinstock
(1978) suggested an improvement of Lumley’s model. The
corresponding form of f(N, S) was worked out by Cheng &
Canuto (1994) to be

f(N, %)= [(1 — 42B})'2 — AC]?, (58a)
where
A=a,(1 —cyorRi™Y, B '=a,+Fr?,
C '=a;+Fr?,
a; = 8.68107° Ko*?, a,=0025, a;=0.014.
(58b)

Finally, Cheng & Canuto (1994) improved on both
Lumley’s and Weinstock’s model and checked their results
against LES data (see their Fig. 5). The function f(N, X) is
given by the following expression:

FIN,Z)=[1+aFr 2(1+bFr 43" 1]7¢, (58¢c)
where R, < c,:
a=231)"1Q—-1), b=012Q—1-3Q H*°,

c=3, (584d)
andR, >c,:
a=4(510)"1Q, b=0, c=31-0QY,
31/2
Q=1+ e Ko%*? (c,o;R71—1). (58¢)

More recently, Canuto & Cheng (1997) have further
improved their model, and their new expression for f(N, X)
is equation (6a) of that paper. In the case in which one
considers only shear, f(0, X) simplifies considerably:

2f723 =1+ p Sh? + (1 + 2p Sh? — £p? Sh*)1/? | (58f)
where

Sh=ASK 12, p=10Qn2312)~1Ko¥2. (58g)

14. TURBULENT PRESSURE

In many instances of astrophysical interest, e.g., in helio-
seismology (Canuto & Christensen-Dalsgaard 1998) one
needs to know the pressure contributed by the turbulent
motion itself. This can be seen in the equations for the
large-scale flow U, equation (17), where the “effective pres-
sure tensor ” is

Po; + puu; . (59a)
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When equation (17) becomes the hydrostatic equilibrium
equation, the turbulent pressure is

P =pw’. (59b)
Using equation (41c), one obtains
PlpK) ™! =3 + 3Y[(A, — 345)S, — 44, S, Ri] . (59¢)
Not surprisingly, p, is not a constant fraction of the turbu-
lent kinetic energy.

15. ANALYSIS OF TOWNSEND’S WORK

For a complete treatment of the problem, one needs the
dynamic equations for the six variables:

K, 0%, uw, wh, €, ¢. (60)

Townsend (1958a, 1958b) used only two dynamic equations,
for 6% and K, his equations (3.3) and (3.7). To treat the
remaining four, he introduced four unknown functions, k,,
KO’ LG, Le:

k, =uww?) ™!, ko= wlw>6%) ">
€ = 1Ly 1K120? | €=K3L"1. (61a)

There is a slight difference in the equations for 62: using
equation (29) equations (26a) and (26b) become

pwl = 027, 1, (61b)

where f is defined in equation (2f). Townsend’s equation
(3.3) reads

Bwl = 0%(z5 ' + 1Y) = 6%t (61c)
Tl =10, (61d)

since he included the logarithmic rate of cooling (which we
call r ! rather than his “8” to avoid confusion with our f).
His length scale L, and our 7, are related by

ot = 4L ) (61e)

while his L, = I, see his equation (3.7) and our equation
(52), which also means that his w? is our K. Thus,

L 31

—“=-—. 1f
Combining Townsend’s equations (3.3) and (3.7), one
obtains his basic result:

R, =Rio;', (62a)

ar = a7(Ri, Pe), (62b)

R,=3H[1—(1—124Ri H™»)'?], (62¢c)

-1

H=1+3L, 1;1<k,, L, 08_IZ]> , (62d)

Ly (ko\?
= () . 2
L, (k) (¢

Townsend’s relations (62c)—(62¢) are correct, but since the
model is unable to provide the function o, k,, k,, k,, the
model is unpredictive.

Criterion (3a) was arrived at in the following way: one
requires that the square root in (62c) be positive, which
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implies that
H> L, (k,\*
Ri<—=1|-") . 62f
T2, <k> 620
On the other hand, from equations (24) and (29) we have

that €, ~ 621~ ~ 1, 162 which gives 7, ~ I*y~'. Equating
this with (61¢) yields L, ~ y ~ 'wl?, and thus

L
L—E ~Pe t, (62g)

0

which transforms (62f) into

H? (k,\*
PeRi<—|-—"]) . 62h
e Ri < 0 <k9> (62h)
If one assumes that the right-hand side is constant, one
obtains the relation

Pe Ri < Ri, , (63a)
. H? (K2

If one further assumed that v; = 1/3wl and Pe = wl/y, one
derives the relation

1 Ri, . . 1
3x R’ Ri < Ri,, 1’
which has been widely employed (e.g., Zahn 1992, 1993,
1994; Maeder 1995, 1996, 1997; Maeder & Meynet 1996).

Let us now use the new turbulence model to compute the
ingredients in equation (62c). We employ equations (39a),
(43a), (61c) for 6%, and (44). We derive

kl% = lpS\% H kg = TTO_*l Sh ’ (64&)

Ly 27, ke\> 1t _, -
L - 3 T ’ <ku - Tge O (‘pSv) > (64b)

€

(63c)

VT=

2
A=S@S) to;t 2, H=1+22@ys)', (64
3 T Ty

0*

where  is defined in equation (51a). Equation (62c) then
becomes

R, = 1H{1 — [1 — 4R, 1, t;: }(H — )H 2]} . (65a)

This is an equation for R, which can easily be solved with
the result

208,) !t =1- (I;—i , (65b)
or = or(Ri, Pe) . (65¢)

This is nothing but P = ¢, equations (50b) and/or (3e) which
led to equation (3g) which we have already discussed in § 1.

16. THE Ri — co LIMIT: CONVECTION

Here we show that in the no-shear case, Ri — oo, the
previous model yields the well-known expressions for the
convective flux. When shear vanishes, the only source is
buoyancy, which must be positive and thus N? < 0, 8 > 0,
V — V.4 > 0. From equation (50a) we have

€=XT|N2|’ (663)

or equivalently,
?|N?*| =28, . (66b)

Using the definition of S,, equations (45b) and (45c), we
obtain, after some algebra,

12| N?| = 3A5[1 + 44, + 3dgtp/c] L. (660)

From equation (43a), we then have for the convective flux
wl =y B =pr®, ®= % — Kt~ 'S,.  (66d)

Substituting the expression for S, and using the definition of
the A values, we finally have

iof Too 3/2 Tho 75 3/2
(I)ZCOS T 1+ClT+Cz? . (666)

Pe = c,(S®)'/° . (66f)

Here the timescales values are given by equations (33)—(34),
S = gafA*y~2, A is the size of the largest eddy, and S is
related to the convective efficiency I' (Cox & Giuli 1968) by
the expression 2I" + 1 = (1 + 25/81)"/%. The coefficients ¢
values are given by c, = 271~ 4)Y? Ko, ¢; =285, ¢, =
3(1 —y,), c;3=n*33Ko) . Equation (66e) coincides
with equation (42) of Canuto & Dubovikov (1998). It is
easy to check that since equations (33)-(34) yield

Pe> 1: (M, T—“) ~Pe°, (66g)
T T
Pe < 1: (ﬁ, T—") ~Pe, (66h)
T T
Equations (66¢) and (66f) give
Pe>1: ®~Pe, ®~SV2, (66i)
Pe<1l: ®@®~Pe?, O~S2, (66)

which are the well-known limits of the convective flux for
large and small convective efficiencies (Cox & Giuli 1968;
Canuto & Mazzitelli 1991).

17. THE Ri — 0 LIMIT: PURE SHEAR

In this case, we obtain (to first order) from equations (45a)
and (45c¢)

DSV=SO, D=d05 Sv=74_5’ (67)

where we have used equations (38c) and (33a). Thus, the first
of equations (44a) becomes

2

K
v=C"-, C,=01, (68)

which is the well-known formula widely used in shear flows
studies, together with the two differential equations
(48)~(49) with N2 = 0 to provide K and € (the so called K-¢
model).

18. FULL MODELS

We have presented three models, two are nonlocal and
one is local. The first nonlocal model is characterized by
two differential equations for K and €, equations (48) and
(49). The nonlocality implies the use of the diffusion terms
D ((K) and D (€) which are given in Appendix A. The model
has no mixing length.
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In the local model, both K and e are treated locally,
giving rise to equations (51) and (52). There are no differen-
tial equations to solve, but the model must specify a mixing
length.

19. RESULTS

Before we present some results of the present model, we
recall that in the models used thus far v; and Pe are taken
to be

vp=13wl, Pe=wly !, (69a)
and thus
3vpy 1 =Pe. (691b)
Second, using the renormalization (3b) valid for small Pe,

n

Pe = iR (69¢)
Equation (69b) becomes
11 1
411 .1
il =R R1<4. (694d)
The present model yields (see eqs. [44a], [15], and [53a]):
125
vt =55 Pe, S,y 2, (69¢)
2n
_ 125 _
Arx L= 2 Pe, S,y 1% . (691)

First, we solve equation (51b) for ¥ in which we use equa-
tion (38c) with A5 ¢ depending on Pe via (33b) and (33c) and
thus on y itself because of equation (53a). The free param-
eter is Pe,, (eq. [53b]) which contains basic variables of the
problem under consideration. The functions S, ; are given
by equation (45), and they depend on both Pe and Ri.

In Figure 5 we present the Richardson flux number for
different values of the parameter Pe, defined in equation
(53b) (see also Fig. 4). In Figure 6a we present the turbulent
kinetic energy K in units of K, equations (53a) and (53b)
for different Pe,. The lower the Pe,, the larger is the value
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of Ri,,. In Figure 6b we give an expanded version of Figure
6a for values up to Ri = 1. In Figure 7a we present the
momentum turbulent diffusivity v/, equation (69¢), versus
Ri for different Pe,, while in Figure 7b we present the turbu-
lent heat diffusivity yr/x, equation (69f), versus Ri. We must
note that in the standard model represented by equation
(69d), there is no turbulence and thus no diffusivity, beyond
Ri = 1. In addition, the values resulting from equation (69d)
are smaller than those exhibited in Figures 7a and 7b even
for the smallest values of Pe, = 102, The ratio of the two
diffusivities, equation (44b), is shown in Figure 8 (see also
Fig. 3).

20. CONCLUSIONS: NATURE OR NURTURE?

Is shear-driven mixing intrinsically weak or did the meth-
odology and approximations used thus far underestimate
its real strength? Considering that the constructional incer-
titudes of all phenomenological models require that one
adopts several ad hoc approximations, the doubts are not
without justification. The question can be answered only if
one employs a turbulence model with a proven record of
performance and reliability in flows other than those
treated here so that its basic credentials are not in question.
The methodologies used thus far are far from being so.

We have documented both physically and mathemati-
cally that the approximations made within phenomenologi-
cal models militate to underestimate the efficiency of
shear-driven mixing thus feeding a negative assessment of
its real capability. We do not claim to have proved that the
new treatment will provide the mixing that stellar data
require. We only claim to have employed an internally con-
sistent treatment for all the physical variables, individually
and collectively, and to have shown that turbulence is alive
and well above the Ri > # limit. The demise of shear-driven
mixing may have been announced somewhat prematurely.

Final judgement can, however, only be made after this
model is applied to a representative stellar case. Even
though the full mode contains 11 differential equations, it
seems hardly necessary to begin with such a model. To
decide whether the new model provides sufficiently more
mixing than the standard model, we think it suffices to first
employ the fully algebraic model we have developed.

APPENDIX A

THIRD-ORDER MOMENTS

The equations for the third-order moments are taken from Canuto (1992). In the presence of buoyancy, shear, and rotation,

they are

Dt

Dt

D \ 0 — 2
(— + r;l)uiujuk = —(u;u;u; Uy ; + perm) — <uiu, ™ ujuy, + perm) + (1 — ¢q1)(4; 0u;u, + perm) — I (5ijq2uk + perm);
1

(A1)

D - - 0 — 0 — — 0 2 —
(— + 13_1>ujuj0 = wu;uy By, — ;4 0U; , + u;u 08U, ;) — (u,-uk oy Ou; + u;u, oy Ou; + Ou, . uiuj> + = ¢110: 4 07U,
Xk Xk Xk

3
+ (1 — ¢11)(A 0%, + 4,0%w); (A2)
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(3+ o+ 21:9_1>u._92  uu B, — U, — 200 Bu + (1 — ey ) B — - B2 (A3)
Dt Ty J ) J axj J axj
D ¢ _, } A2 — 0 - o 73
Z G0 =3B.0%u; — 36u, — 0 — 0. A4
(Dt * Cy & > Pi0%w; " 0x; tx ox? (A4)

where t3 = t/2¢, and ¢, = 7, ¢;o = 4, ¢;; = 3. The analytical solution of equations (A1)-(A4) in the stationary case can be
found in Canuto et al. (1994b). The diffusion of €, D /(¢) can be found in Canuto & Dubovikov (1998).

APPENDIX B

THE CONSTANTS

For the constants 4, equation (38c), we suggest two sets of values:

A =0.127,
A, =0.107,

A, =336x 1073,
A, =332x1073,

A3 =91x10"2,
d; =864 x 1072,

da=01,  Ag=
Ay =012,

The values in equations (B2) correspond to the first set of values (egs. [B1]).
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